$$
\begin{aligned}
& \text { Skip Counting the Squares } \\
& \text { 1.4.9. } \\
& 16,25,36 \text {, } \\
& \ldots 25,36 \text {. } \\
& 49,64,81 \text {, } \\
& \text { 49, _ 81, } \\
& \text { 100, 121, } \\
& \text { 100, 121, } \\
& \text { 144, 169, } \\
& 1,4,9 \text {, } \\
& \text { 1) } 196,225 \\
& \text { (2) } 196.225 \\
& 1, \quad, 9, \\
& \ldots 25,36 \text {, } \\
& \text { 49, _ 81, } \\
& \ldots, 121, \\
& \ldots 169 \text {, } \\
& \text { 49, _ 81, } \\
& \ldots, 121, \\
& \ldots 169 \text {, }
\end{aligned}
$$

Name: \qquad

Squares and Square Roots

a.
$\sqrt{144}=$
c.
$\sqrt{9}=$
e.
$\sqrt{100}=$ \qquad
g.
$\sqrt{64}=$ \qquad
i.

$$
\sqrt{121}=
$$

\qquad
k.

$$
\sqrt{1}=
$$

m.
$10^{2}=$ \qquad
o.
$5^{2}=$ \qquad
o.
$11^{2}=$ \qquad
q.
$8^{2}=$ \qquad
s.
$0^{2}=$ \qquad
u.
$12^{2}=$ \qquad
b.

$$
\sqrt{81}=
$$

d.
$\sqrt{49}=$
f.
$\sqrt{36}=$
h.

$$
\sqrt{16}=
$$

\qquad
j.

$$
\sqrt{25}=
$$

\qquad
I.

$$
\sqrt{0}=
$$

\qquad
n.

$$
9^{2}=
$$

\qquad
p.

$$
7^{2}=
$$

\qquad
p.

$$
6^{2}=
$$

\qquad
r.

$$
1^{2}=
$$

\qquad
t.
$4^{2}=$ \qquad
v.
$3^{2}=$ \qquad

Skip Counting the Cubes
 I, 8,
 I. 8 ,

27, 64,
125,216,
343.512,

729

27,
$\ldots 512$,

$$
125 .
$$

$$
512
$$

729.

729
$125,216$.

27. \qquad

Cubes

Evaluate the Squares and Cubes

$$
\begin{aligned}
& 1)(10)^{3}= \\
& 2)(9)^{3}=
\end{aligned}
$$

11)

$(8)^{2}=$ \qquad
12) $(10)^{2}=$ \qquad
3)
$(8)^{2}=$ \qquad
4) (2) ${ }^{3}=$ \qquad
5) (1) ${ }^{3}=$ \qquad

6) $(6)^{3}=$
7) $(5)^{2}=$

8) $(3)^{2}=$

9) $(2)^{3}=$
19)
$(3)^{3}=$
18) $(12)^{2}=$

17)
$(4)^{2}=$ \qquad
16) (3) ${ }^{3}=$
15)(7) ${ }^{2}=$ \qquad
14) (2) ${ }^{2}=$ \qquad
13) $(4)^{3}=$

> 多
16) $(3)^{3}=$
\qquad

Name :
Teacher:

Score :
Date :

Perfect Squares and Cubes Operations

Write the square or cube root for each number.

1) $\sqrt{36}=$ \qquad
2) $\sqrt[3]{1}=$ \qquad
3) $\sqrt{16}=$
4) $\sqrt[3]{343}=$ \qquad 6) $\sqrt{81}=$

Write the square root for each number.
7) $\sqrt{64}=$
8) $\sqrt{36}=$
9) $\sqrt{9}=$
10) $\sqrt{49}=$
11) $\sqrt{1}=$
12) $\sqrt{100}=$ \qquad

Write the cube root for each number.
13) $\sqrt[3]{343}=$
14) $\sqrt[3]{64}=$ \qquad 15) $\sqrt[3]{1000}=$ \qquad
16) $\sqrt[3]{125}=$
17) $\sqrt[3]{216}=$
18) $\sqrt[3]{512}=$ \qquad

Name:

Math Unit 12

Match each item on the left with the correct item on the right.

1. 1 foot

-
-

2. 3 feet
3. 5280 feet
4. 1 mile

-
-
- 1.6 kilometers
- 1 yard
- 12 inches
- 1 mile

Name: \qquad

Yards, Feet, and Inches

Memorize this: There are 12 inches in a foot.

There are 3 feet in a yard.
There are 36 inches in a yard.

Complete the table. Then use the information in the table to fill in the blank lines below.

1 yard	2 yards	3 yards	4 yards	5 yards
3 feet			12 feet	
36 inches	72 inches	108 inches		

1. ___ yards $=6$ feet $=\ldots$ inches
2. 4 yards $=$ feet $=\ldots$ inches
3. 180 = $\quad=\quad$ feet
4. 3
$=1$ \qquad $=36$ \qquad
5. 9 feet
$=108$ \qquad $=3$ \qquad

* 6 yards $=$ feet $=\ldots$ inches
\qquad

In and Out Boxes: Measurement

Complete the tables below and answer the questions that follow.

yards	1	4	7	
feet				27

feet	1		3	10
inches	12	24		

rule: multiply by 3
rule:
b. How many feet are in 36 inches?
d. How many inches are in 3 feet? \qquad
*. How many feet are in 48 inches? \qquad
*. How many feet are in 5 yards?
\qquad

Use the table below to answer the questions.

yards	1	2	3	4	5	6
inches	36	$?$	108	144	180	216

e. How many inches are in 5 yards? \qquad
f. How many inches are in 2 yards? \qquad
g. On the lines below, describe the rule you can use to find the number of inches in a given number of yards.
\qquad
\qquad

U. S. Length Conversions
 Inches/Feet

There are 12 inches in 1 foot.

1. 36 inches $=\ldots$ feet
2. ___ inches $=14$ feet
3. ___ inches $=5$ feet
4. 144 inches $=\ldots$ feet
5. ___ inches $=27$ feet
6. 1,416 inches $=\ldots$ feet
7. ___ inches $=365$ feet
8. 228 inches $=\ldots$ feet
9. 444 inches $=\ldots$ feet
10. ___ inches $=20$ feet
\qquad
\qquad

U. S. Length Conversions
 Feet/Yards

There are $\mathbf{3}$ feet in 1 yard.

1. 24 feet $=\ldots$ yards
2. \qquad feet $=7$ yards
3. \qquad feet $=15$ yards
4. 33 feet $=\ldots$ yards
5. \qquad feet $=25$ yards
6. 120 feet $=\ldots$ yards
7. ___ feet $=60$ yards
8. 1,245 feet $=\ldots \quad$ yards
9. 990 feet $=\ldots$ yards
10. \qquad feet = 118 yards
\qquad
\qquad

U. S. Length Conversions
 Yards/Miles

There 1,760 yards in 1 mile.
1.
\ldots yards $=.25$ mile
2. ___ yards $=7$ miles
3. 176 yards $=$ \qquad mile

4. 580 yards $=\ldots$ mile
5. ___ yards = 1 mile
6. 5,280 yards $=\ldots \quad$ miles
7. 19,360 yards $=\ldots \quad$ miles
8. ___ yards $=.50$ mile
9. 1,320 yards $=\ldots$ mile
10. ___ yards $=12$ miles

Name:

Math Unit 13

Match each item on the left with the correct item on the right.

1. 1 pound

-
- 1000 grams

2. 2000 pounds

-
- 1 ton

3. 1 kilogram

-
-
- 16 ounces

Converting Weight

Chef John picked up a few amazing cookbooks from France during his vacation. When he got back to his work, he realized, he didn't understand the measurements! Confused, Chef John realized that the recipes use the metric system. For John to read his recipe books, he has to make a few conversions from kilograms to pounds.

Help Tim with a few weight conversion exercises, so he can start buying some ingredients for his restaurant!

Example

Use the table below to convert weight from kilograms (kg) to pounds (lbs)

$20 \mathrm{~kg} \times 2.2046=44.092 \mathrm{lbs}=44.1 \mathrm{lbs}$
 Weight in
 Kilograms
 Multiply 2.2046 to convert kg to lbs
 Weight in Pounds
 Round to the nearest decimal

8) $24.5 \mathrm{~kg}=$
9) $30 \mathrm{~kg}=$
10) $28.3 \mathrm{~kg}=$
11) $32.6 \mathrm{~kg}=$
12) $39.5 \mathrm{~kg}=$
13) $43 \mathrm{~kg}=$
14) $50 \mathrm{~kg}=$
\qquad

Grams and Kilograms

A gram (g) is used to measure the weight or mass of very light objects. A small paperclip weighs about a gram.

A kilogram (kg) is used to measure the weight or mass of heavier objects. A one-liter bottle of water weighs about a kilogram.

1 kilogram $=1,000$ grams
$3 \mathrm{~kg}=$ \qquad g
$6,000 \mathrm{~g}=$ \qquad kg
$3 \mathrm{~kg} \times 1,000=3,000 \mathrm{~g}$
$6,000 \div 1,000=6 \mathrm{~kg}$
$3 \mathrm{~kg}=3,000 \mathrm{~g}$
$6,000 \mathrm{~g}=6 \mathrm{~kg}$

1. A squirrel weighs about....
a. 10 grams
b. 100 grams
c. 1 kilogram
2. A cell phone weighs about...
a. 1 gram
b. 120 grams
c. 2 kilograms
3. A watermelon weighs about...
a. 500 grams
b. 2 kilograms
c. 13 kilograms
4. $8 \mathrm{~kg}=$ \qquad g
5. $2,000 \mathrm{~g}=$ \qquad kg
6. $5,000 \mathrm{~g}=$ \qquad kg
7. $7 \mathrm{~kg}=$ \qquad g
8. $10,000 \mathrm{~g}=$ \qquad kg
9. $30 \mathrm{~kg}=$ \qquad g
10. Jan's cat weighs 4 kg . Carl's cat weighs 2,900 grams. Whose cat is heavier? Explain.
\qquad
\qquad

Name:

Weight

1 pound $=16$ ounces \quad Abbreviation for pounds $=\mathrm{lbs}$.
1 ton $=2,000$ pounds \quad Abbreviation for ounces $=\mathrm{oz}$.
Abbreviation for tons $=T$

$3 \mathrm{lbs} .=$ \qquad oz.
$16 \mathrm{oz} .+16 \mathrm{oz} .+16 \mathrm{oz} .=48 \mathrm{oz}$.
$3 \mathrm{lbs} .=48 \mathrm{oz}$.
$3 T=$ \qquad lbs.

2,000 lbs. $+2,000 \mathrm{lbs} .+2,000 \mathrm{lbs} .=6,000 \mathrm{lbs}$.
$3 \mathrm{~T}=6,000 \mathrm{lbs}$.

1. 4 lbs. $=$ \qquad OZ.
2. $2 T=$ \qquad lbs.
3. 2 lbs. = \qquad OZ.
4. $5 \mathrm{~T}=$ \qquad lbs.
5. $5 \mathrm{lbs} .=$ \qquad OZ.
6. $4 \mathrm{~T}=$ \qquad lbs.
7. Which weighs more: 3 pounds of butter or 60 ounces of butter? Explain.
\qquad
\qquad
\qquad
8. Which weighs more: 2 pounds of bricks or 2 pounds of feathers? Explain.
\qquad
\qquad
\qquad
\qquad Date \qquad

Measurement Conversion Word Problems - Weight

1. Ms. Bezel, the jewelry designer, ordered 500 grams of silver, 800 grams of brass, and 700 grams of copper. How many kilograms of metal did she order in all?
\qquad kilograms
2. Mr. Snow bought 90 grams of Christmas candy for each of his 14 grandchildren. How many total kilograms of candy did he buy?
\qquad kilograms
3. Sarah purchased 8 kg of sugar, 10kg of flour, 500 g of cocoa, 225 g of pecans, and 275 g of coconut. How much do all her groceries weigh in kilograms?
4. Eric has two dogs. He feeds each dog 250 grams of dry food each, twice a day. If he buys a 10-kilogram bag of dry food, how many days will the bag last?
5. The vet instructed Manuel to give his dog .5 milligrams of medication per 1 kilogram of the dogs weight. His dog weighs 12 kilograms. How much total medication should the dog have?
\qquad milligrams
6. The adult dosage directions for 325 mg aspirin tablets reads "take 1 or 2 tablets every 4 hours, not to exceed 12 tablets in 24 hours." In grams, what is the maximum amount of aspirin an adult should take in one day?

Name:

Math Unit 14

Match each item on the left with the correct item on the right.

1. 1 inch
2. 100 centimeters •
3. 1000 meters -

-
- 1 kilometer
- 2.54 centimeters
- 1 meter
\qquad Date \qquad

Measurement Conversion Word Problems - Length/Distance

1. Zach made a chart to show how many mm his plant grew each week for 7 weeks. Each block equals 5 mm of growth. How tall is the plant?

\qquad centimeters
2. Trudy wants to surround her garden on all four sides with fencing. Her rectangular garden is 270 cm by 130 cm . How many meters of fencing will she need?
3. Lu is stringing beads to make a necklace. She is using 30 of the 8 mm beads, 70 of the 4 mm beads, and 40 of the 2 mm beads. How long will her finished necklace be?
4. Susie begins a new walking program with 600 m on the first day. Each day, she will increase her walk by 200 m . How many kilometers will she walk on day 18 of her program?
\qquad kilometers
5. Jin is training for the 50 meter dash. Each day that he trains, he runs the dash six times. Last week, he trained for four days. This week, he trained for five days. In two weeks, how far has Jin run?
\qquad kilometers
6. Mara is building a wind chime. She needs string in the following lengths: six pieces of $20 \mathrm{~cm}, 3$ pieces of 30 cm and one piece of 40 cm . How much string does she need?
$\mathcal{N a m e}$:
Date:

Length Conversion Practice - \# 4
Round answers to 2 decimal places
10 Millimeters = 1 Centimeter 10 Centimeters = 1 Decimeter 10 Decimeters $=1$ Meter 1000 Meters = 1 Kilometer
9 Kilometers $=$ __-_-_-_
Centimeters
10 Kilometers $=$ =____-__
Decimeters
69 Decimeters $=$ _-_-_-_ Kilometers
9 Kilometers $=$ __-_-_-_ Centimeters
8 Kilometers $=$ =_-_-_-_
Meters
72 Millimeters $=$ __-_-_-_
Meters
8 Kilometers $=$ _-_-_-_
Millimeters
10 Kilometers $=$

\qquad
Centimeters
87 Meters $=$ _-_-_-_
Kilometers
54 Millimeters $=$ =___-_-_
Meters
69 Meters $=$ _-_-_-_- Kilometers
76 Decimeters $=$ _-_-_-_-
54 Decimeters $=$

\qquad
Kilometers

Lengtf Conversion Practice - \# 7
Round answers to 2 decimal places
12 Inches $=1$ Foot 3 Feet $=1$ Yard
5280 Feet = 1 Mile
2.54 Centimeters = 1 Inch
1.0936 Yards = 1 Meter $\quad 10$ Millimeters = 1 Centimeter 10 Centimeters = 1 Decimeter 10 Decimeters $=1$ Meter 1000 Meters $=1$ Killometer 1.609 Kilometers $=1$ Mile

Math Unit 15

Match each item on the left with the correct item on the right.

1. 1 tablespoon (tbsp)
2. 1 ounce (oz.)

-

3. 1 teaspoon (tsp) •
4. 1 tablespoon (tbsp)
5. 1 ounce (oz)

-

6. 1000 milliliters (ml) •

- 30 milliliters (ml)
- 1 liter (I)
- 15 milliliters (ml)
- 2 tablespoon (tbsp)
- 5 milliliters (ml)
- 3 teaspoons (tsp)

Convert from orto: oz, tsp ortbsp as requested.

Convert to or from ounces, teaspoons, ta blespoons.

1. 30 tsp $=\quad \mathrm{fl} \mathrm{oz}$ 2. $44 \mathrm{tbsp}=\quad \mathrm{tsp}$
2. $48 \mathrm{tbsp}=\quad \mathrm{fl} \mathrm{oz}$
3. $5 \mathrm{tbsp}=$
tsp
4. $6 \mathrm{tbsp}=\quad \mathrm{fl} \mathrm{oz}$
5. $36 \mathrm{floz}=$
tsp
6. $47 \mathrm{tbsp}=\mathrm{fl} \mathrm{Oz}+\mathrm{tbsp}$
7. $19 \mathrm{tsp}=\quad \mathrm{tbsp}+\mathrm{tsp}$
8. $7 \mathrm{tsp}=\quad \mathrm{tbsp}$
9. $21 \mathrm{fl} \mathrm{Oz}=$
tsp
10. $34 \mathrm{floz}=\quad$ tsp
11. $28 \mathrm{fl} \mathrm{OZ}=$
tsp
12. 5 tsp $=$
fl OZ
13. $9 \mathrm{fl} \mathrm{OZ}=$ tsp
14. $40 \mathrm{floz}=$ tsp
15. $6 \mathrm{fl} \mathrm{OZ}=$
tbsp
\qquad

Converting Liters and Milliliters

Complete the tables below and answer the questions that follow.

liters	1		9	
milliliters		5,000		30,000

rule: multiply by 1,000

milliliters	4,000			550,000
liters		6	23	

rule: divide by 1,000
b. How many milliliters are in 23 liters?
d. How many liters
are in 550,000 milliliters? \qquad
f. How many milliliters are in 100 liters?
h. How many liters are in 890,000 milliliters? \qquad
\qquad Date \qquad

Measurement Conversion Word Problems - Liquid Volume

1. Mrs. Smith is planning a class party for 18 students. She will be serving apple juice. If she serves 250 ml per student, how many liters of juice will she need to buy?
2. Mr. Green's lawn mower holds 600 milliliters of gasoline in the tank. He just filled his 6 liter gas can at the station. How many times will he be able to fill his lawn mower tank from the gas can?
3. A punch recipe calls for 3 liters ginger ale, 1.5 liters tropical fruit juice, and 500 milliliters pineapple juice. How much punch will the recipe make?
\qquad liters
4. Ann is baking 2 cakes, brownies, cookies and 2 pies for the bake sale. The recipes call for milk in the following amounts: $230 \mathrm{ml}, 50 \mathrm{ml}$, 120 ml, $200 \mathrm{ml}, 300 \mathrm{ml}$, and 100 ml . How much milk does she need in all?

Name: \qquad

Math Unit 16-18

Match each item on the left with the correct item on the right.

1. The perimeter of •
a polygon
2. The area of a rectangle
3. The area of a square
4. The volume of a rectangular solid
5. The area of a triangle
6. Three types of triangles
7. Pi

-

8. The
circumference of a circle
9. The area of a circle

- $1 / 2$ its base times its height
- Right triangle, isosceles triangle, equilateral triangle
- one of its sides squared
- 2 times Pi times its radius
- Pi times its radius squared
- 3.14
- The sum of the length of its sides
- its length time its width times its height
- Its base times its height
\qquad

Perimeter

Find the perimeter of each polygon.
a.

b.

c.

Perimeter $=$ \qquad
Perimeter $=$ \qquad

Perimeter $=$ \qquad
d.

3 km
e.

Perimeter $=$ \qquad
g.

h.

Perimeter $=$ \qquad
f.

Perimeter $=$
Perimeter $=$ \qquad
i.

Perimeter $=$ \qquad

Bonus Box: Write the names of the polygons pictured above.
\qquad

Perimeter of a Polygon

Find the perimeter of each shape by adding the lengths of each side. Be sure to include the units in your a nswer.
a.

b.

C.

f.

g.

h.

11 in.
i.

\qquad

Area of a Rectangle

To find the area of a rectangle, multiply the length by the width.
example:

$$
\text { area }=4 \mathrm{~m} \times 8 \mathrm{~m}=32 \text { square meters }
$$

Find the area of each rectangle by multiplying
a.

b.

C.

area $=$

\qquad
d.

e.

f.
12 cm

area $=$ \qquad area $=$ \qquad area $=$ \qquad
g.

h.

i.

area $=$ \qquad area = \qquad area = \qquad
\qquad

Areas of Rectangles

Find the areas of the rectangles. Be sure to include the units in your answer.

$$
A=
$$

\qquad

$$
A=
$$

\qquad

$$
A=
$$

\qquad

Find the lengths of the unknown sides. Be sure to include the units in your answer.

$A=36 \mathrm{~mm}^{2}$

Side $c=$ \qquad

$A=21 \mathrm{~m}^{2}$

Side $a=$ \qquad Side $a=\square$

$A=49 \mathrm{~cm}^{2}$

Side $t=$ \qquad

A rectangle has a width of 20 m and an area of 60 m . What is the length of the rectangle?

A rectangle has an area of $36 \mathrm{~mm}^{2}$. All of the sides are the same length.
What is the length of a single side?

Math Unit 16-18

Match each item on the left with the correct item on the right.

1. The perimeter of •
a polygon
2. The area of a rectangle
3. The area of a square
4. The volume of a rectangular solid
5. The area of a triangle
6. Three types of triangles
7. Pi

-

8. The
circumference of a circle
9. The area of a circle

- $1 / 2$ its base times its height
- Right triangle, isosceles triangle, equilateral triangle
- one of its sides squared
- 2 times Pi times its radius
- Pi times its radius squared
- 3.14
- The sum of the length of its sides
- its length time its width times its height
- Its base times its height
\qquad

Volume of a Rectangular Prism

To find the volume of a rectangular prism, multiply the length by the width by the height.

$$
\begin{array}{ll}
2.4 \mathrm{~cm} & \boldsymbol{V}=l \times w \times h \\
\mathrm{~cm} & \boldsymbol{V}=0.6 \mathrm{~cm} \times 1 \mathrm{~cm} \times 2.4 \mathrm{~cm} \\
& \boldsymbol{V}=1.44 \mathrm{~cm}^{3}
\end{array}
$$

Calculate the volume of each rectangular prism. Be sure to include units in your answer.
a.

b.

$V=$ \qquad
e.

c.

$V=$ \qquad
d.

$V=$ \qquad
g.

$V=$

$V=$ \qquad $V=$ \qquad
\qquad

Area of a Triangle

To find the area of a triangle, use the formula area= $\frac{1}{2} \times$ base \times height or $A=\frac{1}{2} \times b \times h$. example:

$$
\begin{array}{ll}
A=\frac{1}{2} \times b \times h & A=\frac{1}{2} \times 7 \mathrm{~cm} \times 4 \mathrm{~cm} \\
\text { base }=7 \mathrm{~cm} & A=\frac{1}{2} \times 28 \mathrm{~cm}^{2} \\
\text { height }=4 \mathrm{~cm} & A=14 \mathrm{~cm}^{2}
\end{array}
$$

Find the area of each triangle.
a.

b.

c.

area $=$ \qquad area = \qquad area = \qquad
d.

e.

f.

area $=$ \qquad area $=$ \qquad
area $=$
\qquad

Find the area of a triangle using the base and height measurements.
g.
h.

$$
\begin{aligned}
& \mathbf{b}=10 \text { centimeters } \\
& \mathbf{h}=15 \text { centimeters }
\end{aligned}
$$

i.
b $=7$ kilometers
h $=22$ kilometers
\qquad area = \qquad area = \qquad
\qquad

Area of Rectangles \& Triangles

Area of a Triangle

$1 / 2 \times(b \times b)=A$
To find the area of a triangle, multiply $1 / 2 \times$ base \mathbf{x} height.

Area of a Rectangle
 $$
l \times w=A
$$

To find the area of a rectangle, multiply length x width.

Area of the shaded triangle:

10 cm
$b=10 \mathrm{~cm}$
$h=8 \mathrm{~cm}$
$1 / 2 \times 10 \mathrm{~cm} \times 8 \mathrm{~cm}=40 \mathrm{~cm}^{2}$
Area of the rectangle:
$l=10 \mathrm{~cm}$
$\boldsymbol{w}=8 \mathrm{~cm}$
$10 \mathrm{~cm} \times 8 \mathrm{~cm}=80 \mathrm{~cm}^{2}$

Find the area of each rectangle and shaded triangle.
a.

area of the square $=$ \qquad
area of the triangle $=$ \qquad
d.

area of the rectangle $=$ \qquad
area of the triangle $=$ \qquad
b.

area of the rectangle $=$ \qquad area of the triangle $=$ \qquad
e.

area of the rectangle $=$ \qquad area of the triangle $=$ \qquad
c.
 area of the rectangle $=$ \qquad area of the triangle $=$ \qquad
f.

area of the rectangle $=$ \qquad area of the triangle $=$ \qquad

Challenge: Find the area of the polygon. Use the back if you need work space.

Math Unit 16-18

Match each item on the left with the correct item on the right.

1. The perimeter of •
a polygon
2. The area of a rectangle
3. The area of a square
4. The volume of a rectangular solid
5. The area of a triangle
6. Three types of triangles
7. Pi

-

8. The
circumference of a circle
9. The area of a circle

- $1 / 2$ its base times its height
- Right triangle, isosceles triangle, equilateral triangle
- one of its sides squared
- 2 times Pi times its radius
- Pi times its radius squared
- 3.14
- The sum of the length of its sides
- its length time its width times its height
- Its base times its height
\qquad

Circumference of a Circle

To find the circumference of a circle, use the formula $\mathbf{p i} \mathbf{x}$ diameter $=$ circumference.
This formula is often written as $\boldsymbol{C}=\boldsymbol{\pi} \mathbf{x} \boldsymbol{d}$.

The circle pictured here has a diameter of 10 cm .
$\boldsymbol{d}=10 \mathrm{~cm}$
$\pi \approx 3.14$
$10 \mathrm{~cm} \times 3.14=31.4 \mathrm{~cm}$

Find the circumference of each circle. Use 3.14 for pi.
a.

b.

c.

\qquad
f.

\qquad
\qquad
g. Karla and Jeremy have a cicular pool with a diameter of 12 feet. What is the circumference of the pool?
\qquad

Area of a Circle

To find the area of a circle, use the formula $\mathbf{p i} \mathbf{x}$ radius $^{2}=$ area.
This formula is often written as $\boldsymbol{A}=\pi \boldsymbol{r}^{2}$.

The circle pictured here has a radius of 5 cm .
$r=5 \mathrm{~cm}$
$\pi \approx 3.14$
$A=3.14 \times(5 \mathrm{~cm} \times 5 \mathrm{~cm})$
$A=3.14 \times 25 \mathrm{~cm}^{2}$
$A=78.50 \mathrm{~cm}^{2}$

Find the area of each circle. Use 3.14 for pi.
a.

b.

c.

d.

e.

f.

g. Kaylee and Rory have a circular swimming pool. The pool has a cover that fits snuggly over the top of it. If the radius of the pool is
11 ft , what is the surface area of the cover?

Name: \qquad
\qquad
Calculate Area Practice - Page 1 Calculate the area.

Area= \qquad

Area=

Area=

Area=

Area=__-_-_-

Area= \qquad

Area: Pi (3.14) \times the radius (r) squared
Diameter $=$ radius $\times 2$

